• EN
  • Facebook
  • Instagram
  • Youtube
  • Linkedin
Você está em: Início > Ensino > Unidades Curriculares > LGEB10152
Autenticação
ATENÇÃO: Este site utiliza cookies. Ao navegar no site estará a consentir a sua utilização.

Análise de Dados para Gestão

Código: LGEB10152    Sigla: ADG
Área Científica: Métodos Quantitativos

Ocorrência: 2021/22 - 2S

Área de Ensino: Métodos Quantitativos

Cursos

Sigla Nº de Estudantes Plano de Estudos Ano Curricular Créditos Horas Contacto Horas Totais
LGEB1 124 Despacho 9804/2016, de 1de agosto 5,5

Horas Efetivamente Lecionadas

GE-2-D-TA

Teórico-Práticas: 58,00

GE-2-D-PL

Teórico-Práticas: 57,50

GE-2-D-TB

Teórico-Práticas: 58,00

Docência - Horas Semanais

Teórico-Práticas: 4,00

Tipo Docente Turmas Horas
Teórico-Práticas Totais 2 8,00
Ricardo Miguel Vieira de São João - ESGT   8,00

Docência - Responsabilidades

Docente Responsabilidade
Ricardo Miguel Vieira de São João - ESGT Responsável

Objetivos de aprendizagem e a sua compatibilidade com o método de ensino (conhecimentos, aptidões e competências a desenvolver pelos estudantes)

A estrutura programática desta unidade curricular visa proporcionar aos alunos os conhecimentos básicos de análise de dados, probabilidades e modelação estatística. Pretende-se habilitar os alunos com as seguintes competências:
  • Propor soluções e decisões com base em modelação estatística, análise de dados e respectiva interpretação;
  • Recurso a técnicas básicas de investigação;
  •  Utilização de ferramentas informáticas que permitam realizar modelação estatística e análises de dados;
  • Aprendizagem ao longo da vida de matérias quantitativas.

Conteúdos programáticos

1. Amostragem e Distribuições Amostrais: Amostragem Aleatória;Números Aleatórios e Variáveis Aleatórias;Lei dos Grandes Números. Teorema Limite Central; Estatísticas Amostrais;Distribuição da Média Amostral
2.Estimação:Estimador e Estimativa;Propriedades dos Estimadores;Método da Máxima Verosimilhança;Estimação por Intervalo para a Média, Proporção, Diferença entre Médias e Variância.
3. Testes de Hipóteses (TH):Hipótese Nula e Hipótese Alternativa;Tipologia dos Erros; Testes Paramétricos: TH para a Média, Proporção, Diferença entre Médias e Variância; Testes de Independência (Qui-Quadrado & Teste Exacto de Fisher); medidas de associação.
4. Regressão Linear (RL):Diagrama de Dispersão e Análise de Correlação;Modelo de RL Simples; Método dos Mínimos Quadrados.
5. Séries Temporais:Modelos de séries cronológicas e métodos de previsão; Análise de tendência;Variações sazonais, cíclicas e irregulares; Aplicações
6. Números índices: Índices simples;Índices agregados;Deflação de valores;Aplicações.

Demonstração da coerência dos conteúdos programáticos com os objetivos de aprendizagem da unidade curricular

Os conteúdos programáticos estão em linha com os objetivos da unidade curricular dado que o programa foi concebido para abordar numa primeira fase os conceitos base de Estatística que suportam a Análise de Dados, passando posteriormente por técnicas específicas de análise de séries de dados. As técnicas selecionadas apresentam uma relação estreita com os objetivos, não apenas da unidade curricular, mas também do próprio curso. As técnicas serão aplicadas gradualmente e sempre que possível, serão implementadas com recurso a software livre e de código aberto, de modo a minimizar o esforço de cálculo e a conduzir o enfoque na interpretação de resultados bem como na melhor tomada de decisão com vista à resolução da problemática proposta.

Metodologias de ensino e de aprendizagem específicas da unidade curricular articuladas com o modelo pedagógico

Recorre-se à avaliação contínua (2 testes, 50% cada, nota mínima de 8 valores em ambos) ou exame final. Serão admitidos à avaliação por frequência, alunos que tenham uma assiduidade mínima (2/3 das aulas) caso contrário serão avaliados por exame. Sempre que o docente julgue necessário a clarificação de uma classificação, recorrerá à realização de uma prova oral; não obstante o disposto no Regulamento de Avaliação de Conhecimentos e Competências. A metodologia de ensino terá como base:(i) exposição da matéria sempre que possível com o recurso a casos práticos e implementação computacional;(ii) resolução de exercícios, referentes a cada tópico do conteúdo programático;(iii) disponibilização de material de apoio para uma maior assimilação das temáticas propostas;(iv) interação permanente com os discentes, com o objetivo de no início de cada aula rever de forma breve os conceitos principais da aula anterior;(v) incentivar a implementação das metodologias expostas na resolução de problemas.


Demonstração da coerência das metodologias de ensino e avaliação com os objetivos de aprendizagem da unidade curricular

Pretende-se que os alunos adquiram competências relacionadas com a estatística e análise de dados. Para o efeito os alunos têm de aprender a resolver problemas/exercícios sobre as diversas temáticas, com recurso à metodologia e técnica(s) mais apropriada(s), e sempre que possível com recurso a software livre e de código aberto. Os referidos problemas serão propostos nas aulas. Adicionalmente importa aos alunos realizarem análises de dados com ênfase na gestão e semelhantes com dados obtidos em ambiente profissional. O regime de avaliação foi concebido para medir até que ponto as competências foram de facto assimiladas.

Bibliografia de consulta (existência obrigatória)

  • Black, K. (2019). Business statistics: for contemporary decision making. John Wiley & Sons.
  • Cortinhas, C., & Black, K. (2014). Statistics for business and economics. Wiley Global Education.
  • Crawley, M. J. (2012). The R book (2nd Edition). John Wiley & Sons.
  • Doane, D. P., Seward, L. E.,Kira,E.,Mello,M.R. (2014). Estatística aplicada à administração e à economia (4ª edição). AMGH
  • Field, A., Miles, J., & Field, Z. (2012). Discovering statistics using R. Sage publications.
  • Hogg, R. V., Tanis, E. A., & Zimmerman, D. L. (2010). Probability and statistical inference. Upper Saddle River, NJ, USA: Pearson/Prentice Hall.
  • Kazmier, Leonard J. (2007), Estatística Aplicada à Economia e Administração (4ª edição). McGraw Hill.
  • Pedrosa, A.C. e Gama, S.M. (2018) Introdução Computacional à Probabilidade e Estatística com Excel. Porto Editora.
  • Torgo, L. (2009). A linguagem r-programação para análise de dados. Lisboa: Escolar Editora.

Observações

Durante o período de confinamento, devido à pandemia COVID-19, as aulas serão dadas com recurso ao sistema de videoconferência FCCN Colibri ZOOM. A avaliação será realizada na plataforma EXAM.NET (https://exam.net) referida no despacho nº3/2020.